Jordan isomorphisms and additive rank preserving maps on symmetric matrices over PID
نویسندگان
چکیده
منابع مشابه
C∗-Isomorphisms, Jordan Isomorphisms, and Numerical Range Preserving Maps
Let V = B(H) or S(H), where B(H) is the algebra of bounded linear operator acting on the Hilbert space H, and S(H) is the set of self-adjoint operators in B(H). Denote the numerical range of A ∈ B(H) by W (A) = {(Ax, x) : x ∈ H, (x, x) = 1}. It is shown that a surjective map φ : V→ V satisfies W (AB +BA) =W (φ(A)φ(B) + φ(B)φ(A)) for all A,B ∈ V if and only if there is a unitary operator U ∈ B(H...
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملLinear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملJordan Semi-Triple Multiplicative Maps on the Symmetric Matrices
In this paper, we show that if an injective map on symmetric matrices n S C satisfies then , , n ABA A B A A B S C , Φ t f A SA S for all n A S C , where f is an injective homomorphism on , is a complex orthogonal matrix and C S f A is the image of A under f applied entrywise.
متن کاملAdditive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2006.04.022